
35 Avestia Publishing

International Journal of Electrical and Computer Systems

Volume 1, Issue 1, Year 2012

ISSN: 1929-2716

Article ID: 005, DOI: 10.11159/ijecs.2012.005

Using Aspects for Platform-Independent to Platform-
Dependent Model Transformations

Mohammad Alhaj, Dorina Petriu
Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa ON Canada, K1S 5B6
malhaj@sce.carleton.ca; petriu@sce.carleton.ca

Abstract– This paper presents an aspect-based approach for
realizing a transformation from platform-independent to
platform-dependent models in the context of a model
transformation chain that generates queueing-based
performance models from UML design models of service-
oriented applications. The purpose of generating such
performance models is to evaluate the performance of the
system under development in the early software lifecycle
phases, in order to insure that it will meet the performance
requirements. The paper presents the model transformation
chain PUMA4SOA, which transforms automatically a UML
model of a service-oriented architecture (SOA) system extended
with MARTE performance annotations into an intermediate
model, Core Scenario Model (CSM), which in turn is used to
generate a Layered Queueing Network (LQN) performance
model. Aspect-oriented modeling is used to represent different
services offered by the underlying SOA platform to the SOA
application. The paper discusses and compares different
alternatives for composing the platform aspect models with the
platform-independent model (PIM) of the application
throughout the model transformation chain.

Keywords: SOA, Software Performance Engineering, Aspect-
oriented modeling, Model transformation, Performance
Analysis

© Copyright 2012 Authors - This is an Open Access article
published under the Creative Commons Attribution License
terms (http://creativecommons.org/licenses/by/2.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
Service-Oriented Architecture (SOA) is a software

architectural approach that seeks to develop and deploy
business applications as a set of reusable services (Earl,
2005). The developers of SOA applications would benefit

from the ability to estimate the performance of the proposed
design (in terms of response time, throughput and
utilizations) in the early development phases, as promoted by
the Software Performance Engineering methodology (Smith,
1990). This requires deriving (by hand or automatically) a
performance model from the software design model and
deployment information. In the case of UML designs,
performance annotations are added to the software model
with the help of the MARTE profile, standardized by OMG
(OMG, 2009). An example of a model transformation chain
which takes as input a UML software design model with
performance annotations and generates automatically
various types of performance models (such as queueing
networks, Petri nets, simulation, etc.) is called PUMA -
Performance for Unified Modeling Analysis (Woodside et al.,
2005). The authors of this paper, who were also contributors
to PUMA, have proposed an extension called PUMA4SOA
(Alhaj and Petriu, 2010), which adds new capabilities for
evaluating the performance of SOA systems. The main
differences between PUMA and PUMA4SOA stem from the
kind of design models taken as input and the separation
between the Platform-Independent Model (PIM) of the SOA
application, and the Platform-Specific Model (PSM) which
incorporates platform details needed for performance
evaluation. We account for platform effects similar to (Selic,
2008), considering that the underlying platform offers a set of
services or operations to the applications running on top of it.
This allows for the rapid composition of a given PIM with
multiple platform models, which allows us to evaluate its
performance for different platforms.

This paper focuses on modeling as aspects the platform
operations details required for performance analysis and
considers alternate ways for composing the aspects with the
application model. This paper extends a previous conference
paper (Alhaj and Petriu, 2012) with a performance-
completion feature model for representing the variability in
the service platform, an approach for composing multiple

36

aspects, a description of aspect composition at CSM level and
a section on performance analysis using the LQN model.

The paper considers three alternative approaches for
composing the aspects model representing platform
operation with the application PIM, as shown in Figures 1, 9
and 12 and discussed later in the paper. In Figure 1, the
starting point of PUMA4SOA is the UML design model with
MARTE annotations, which includes three parts: 1)
application PIM, 2) deployment diagram, and 3) platform
aspect models. The application PIM represents the software
design using three views: a) workflow model describing the
business process, b) service architecture model representing
the hierarchy of underlying services, and c) service behaviour
models representing the execution steps of the invoked
services. The deployment diagram describes the allocation of
software artifacts to processors, needed for the performance
model derivation.

A feature model called Performance Completion (PC)

feature model represents the choices in platform
characteristics, as described in section 2. Platform aspect
models represent the structure and behaviour of different
service platform (such as service invocation and service
discovery) in a generic form. A recent OMG standard profile
SOA Modeling Language (SoaML) (OMG, 2012) is also used to
express the service architecture model. SoaML extends UML
with the ability to define the service structure, behaviour,
dependencies, and capabilities.

Aspect oriented modeling (AOM) is used to generate the
platform specific model (PSM) by weaving platform aspect
models into different locations in PIM. In principle, AOM uses
two types of models: the primary model, which is the core

design model, and a set of aspect models describing concerns
that crosscut the primary model. Aspect composition (a.k.a.
weaving) in AOM is performed in a number of steps: 1)
defining the point cut rules (a set of conditions applied to the
primary model to identify the join points), 2) identifying the
join points (i.e., location in the primary model where an
aspect composition occurs), 3) instantiating a context-specific
aspect model, by binding the parametric values of the generic
aspect to concrete values related to the context of the join
point in the primary model, and 4) performing the aspect
composition at the join points (France et al., 2004),
(Woodside et al, 2009).

After obtaining the PSM, a model transformation is
performed to generate the Core Scenario Model (CSM). CSM is
an intermediate language which aims to bridge the semantic
gap between the software and performance domains during
the model transformations (Petriu and Woodside, 2007). CSM
reduces the complexity of mapping different views from
design model to the performance model and helps checking
the consistency of the generated models. The CSM is then
transformed to one of different types of performance models,
such as Layered Queuing Network (LQN) (Woodside et al.,
2005), which is solved to produce the performance results of
the system.

PUMA4SOA provides the ability to transform PIM to PSM
based on the AOM approach at three modeling levels: UML,
CSM and LQN. Although the platform aspect models are
originally defined in UML, they can be transformed separately
and composed into the primary model at different levels, i.e.
UML (Fig. 1), CSM (Fig. 9), and LQN (Fig.12) as discussed in
the paper.

The paper is organized as follows: Section 2 introduces
the concept of performance completion feature model;
Section 3 describes the UML input models, illustrated with a
Purchase Order system example; Section 4 presents and
compares the aspect composition at the UML, CSM and LQN
levels; Section 5 describes the approach for performing
multiple aspect compositions; Section 6 discusses the
performance results of the case study; Section 7 presents
related work and Section 8 the conclusion and directions for
future work.

2. Performance Completion Feature Model
PUMA4SOA uses a so-called Performance Completion

(PC) feature model to represent the variability in service
platform which may affect the system’s performance. PC
feature model provides the choice to select between multiple
platform characteristics (each represented by aspects) based
on the business requirements. The concept of “performance
completions” was introduced by (Woodside et al., 2002) to
close the gap between abstract design models and external
platform factors. It was also used in (Happe et. al, 2010) and
(Tawhid and Petriu, 2011) to define the variability in
platform choices, execution environments, types of platform
realizations and other external factors which have impact on

Fig. 1. PUMA4SOA approach: Aspect composition at UML level

37

the system’s performance. A feature model is normally
represented using feature modeling notations and grammars,
such as the one introduced in (Batory, 2005). However, in
order to maintain the model consistency with the UML input
design models (PIM, Deployment diagram and Aspect
models), we use a UML class diagram extended with
stereotypes to represent the PC feature model.

The term "feature" was introduced in (Kang et al., 1990)
and defined as a "prominent or distinctive user-visible aspect,
quality, or characteristic of a software system". In
PUMA4SOA, the PC feature model represents a classification
of different SOA platform characteristics and their
relationship in a hierarchical format. The developer can select
from the PC feature model those platform features needed for
the application, according to the system requirements.
(Please note that in our work, we build and aspect model for
each feature, so the selection of a certain feature implies the
selection of an aspect).

The root class, which represents the service platform is
decomposed into a set of feature groups, some mandatory
and others optional. A feature group holds in turn a set of
features, which may have sub-features. The relationships
between a feature and its sub-features can be categorized as:

1) Mandatory: represented as a solid circle, used when a
feature group or a feature is required;
2) Optional: represented as non-solid circle, used when a
feature group or a feature is optional.
3) Or: represented as a solid arc, used when at least one
of the feature groups or features must be selected.
4) Alternative (XOR): represented as a non-solid arc, used
when one of the feature groups or features must be
selected.
In addition to the relationships between parents and

child nodes, cross-tree feature constraints are allowed. For
instance, “A requires B” means that the selection of A implies
the selection of B.

Fig. 2 shows the PC feature model used for the Purchase
Order system example presented in the next sections. There
are three mandatory feature groups which are required:
Operation, Message Protocol, and Realization, and two
optional feature groups: Communication and Data
Compression. The relationships between the feature groups
and their features are all alternative (XOR) with exactly-one-
of feature selected. Although the dependencies between the
sub-features are not shown in the model, some features,
such as Operation, Message Protocol and Realization are
dependent. For example selecting one of the Operation sub-
features, such as Invocation, requires also selecting one of the
message protocols (Http or SOAP) and one of the realizations
(WebService, REST, etc.).

Fig. 2. Platform Completion (PC) Feature Model

3. Example of PUMA4SOA Input Model: Purchase
Order System

PUMA4SOA begins with developing the Platform
independent model (PIM). The top level model is the business
workflow model represented as UML activity diagram(s). Fig.
3 illustrates the workflow of a simple purchase order system.
The workflow starts when the sales server receives the
purchase order (PO), followed by the parallel processing of
invoice and scheduling activities, and then by the ShipProduct
activity. An AD partition marked with the MARTE
stereotype «PaRTimeInstance» indicates the runtime
process/component responsible for the execution of the
respective activities – in this case, the workflow POProcess.
The stereotype «GaWorkloadEvent» indicates that a closed
workload is associated to this business process, with a
number of simultaneous users (i.e., population) expressed by
the MARTE variable Nusers; each user has a think time of
3000 ms, given by the attribute extDelay.

Fig. 4 illustrates the service architecture model
expressed with the help of SoaML stereotypes to define the
participants, their binding rules and their capabilities.
Components stereotyped as «Participant» indicate parties
that provide or consume services. Ports are stereotyped with
«Request» to indicate the consumption of a service, or with
«Service» to indicate the offered service.

38

The details of each activity in the workflow model from Fig. 3
are described in a refined service behaviour model. However
due to the space limitations, only Ship Product activity is
presented in Fig. 5. The shadowed area indicates the
invocation by Sales of the SetShippingDate service offered by
the component Shipping, which uses a data management
instance to store the data on a disk server. From a
performance point of view, a UML behaviour model drawn as

an activity or sequence diagram can be considered that it
represents a Scenario composed of Steps related by
predecessor-successor relationships (sequence, branch,
merge, fork, join, etc.). MARTE has two kinds of step
stereotypes: «PaStep» representing the execution of an
activity or an operation invoked by a message and
«PaCommStep» for the communication costs involved with
passing a message between components. Examples of
«PaStep» attributes are hostDemand giving the value and unit
for the step execution time and prob giving the probability for
the optional steps. An example of «PaCommStep» attribute is
msgSize giving the size and unit.

For performance modelling we need also a deployment
diagram as in Fig. 6, which shows the allocation of active
software components (indicated with the MARTE stereotype
«SchedulableResource») to the hardware nodes
(«GaExecHost» and «GaCommHost»).

A platform aspect model describes the structure and
behaviour of a platform operation in a generic format. In this
paper, the SOA platform is in fact the middleware used for
service invocation, discovery, publishing, etc. Each
middleware operation is represented by a different aspect
model which has multiple views. Fig. 7a illustrates the
generic deployment diagram and Fig. 7b the sequence
diagram of the service invocation aspect model.
The aspect models are defined independently of the SOA
application with which they will be composed, so generic
parameters are used. As a naming convention, the vertical bar
‘|’ indicates a generic role name (France et al., 2004). For
example, the |client component acts as service consumer,
while the |provider component as service provider. The
middleware on both sides defines two generic roles: the
|xmlParser which helps to parse and marshal/unmarshal data
and the |SOAP stub for sending/receiving messages using the
SOAP protocol.

4. PIM to PSM Transformation
4.1 Aspect Composition at the UML Level

 Fig. 1 shows the alternative where the aspect
composition takes place in the UML design model. The
models described in Fig. 3 to Fig. 6 represent the purchase
order system in UML extended with MARTE and SoaML
stereotypes. In our example, the primary model is the
platform independent model (PIM) in Figs 3, 4 and 5, while
the platform aspect model represents the generic structure
and behaviour of the platform operation “service invocation”
in Figs. 7a and 7b.

The first step in the AOM approach is to define the point
cut rules. Since our example aspect (i.e., service invocation)
applies only to SOA services, the point cut rule must be able
to locate the service calls in the primary model. In the case of
Service Invocation, we are looking for a UML element of type
Message in a service behaviour model that calls a service
stereotyped «Service» in the architecture model. (In our
example, there are four services identified in Fig. 4).

Fig. 3. PIM: Workflow model.

Fig. 4. PIM: Service Architecture model.

Fig. 5. PIM: Service Behavior model.

39

The next step looks for the join points (i.e., the places in
the model where to weave the aspects) by applying the point
cut rules to PIM. The result of this step will identify all the
messages in behaviour models that represent service calls.
For instance, the highlighted message SetShippingDate in Fig.
5 is one of the join points.

Once the join points are identified, a context specific
aspect model is generated by instantiating the generic aspect
model for each join point. The instantiation requires binding
the generic roles to concrete ones from the scope of the join
point, and then assigning context specific performance values
to «PaStep» attributes (processing demands, probabilities,
etc.). Table 1 illustrates a sample of binding of generic roles
to concrete values: some to existing PIM roles and some to
newly created roles (for example, XML parsers and SOAP
processing). Table 2 illustrate a sample of the binding of
generic performance parameters represented by MARTE
variables assigned to stereotype attributes. The context
specific aspect model is not shown here due to the space
limitations; however it will appear within the composed
model in Fig. 8.

Table 1. Binding generic to concrete roles.

Generic Aspect Context Specific Aspect
|Client sales
|xmlParserC XMLParserInv (new)
|soapClientC SOAPInv (New)
|provider shipping
|xmlParserP XMLParserShip (new)
| soapClientP SOAPShip (new)
RequestService SetShippingDate
ServiceInvocation SetShippingDateInvocation

a) Generic deployment diagram for Service invocation

b) Generic behaviour diagram for Service invocation

Fig. 7. Platform aspect model for “Service invocation”

Fig. 6. Deployment diagram

40

Table 2. Binding generic performance parameters.

Generic Aspect attribute
Context Specific

Aspect value
RequestService::hostDenamd h1 0.18 ms
MarshallingMessage::hostDemand h2 1.56 ms
RequestSOAPMessage::msgSize msg 50 Kb
UnmarshallingMessage::hostDemand h3 1.75 ms
ServiceInvocation::hostDemand h4 0.1 ms
MarshallingMessage::hostDemand h5 1.69 ms
UnmarshallingMessage::hostDemand h6 1.82 ms

The final step in AOM is to weave (i.e., compose) the

context specific aspect model within PIM at the join point
location. Fig. 8 shows a composed model, where the
SetShippingDate message (join point) has been replaced with
the context specific aspect model (the gray area).

4.2. Aspect Composition at the CSM Level

CSM is focused on modeling scenarios, which are implicit
in many software specifications. The CSM metamodel
describes three main types of concepts: resources, scenarios,
and workloads. A scenario is a graph of steps with
precedence relationships. A step may represent a basic
operation or be refined as a sub-scenario. There are four
kinds of resources in CSM: Processing Resource,
ComponentResource, LogicalResource and external resource.

PUMA4SOA provides the flexibility to perform the aspect
composition at the CSM level, as shown in Fig. 9. The platform
independent model (PIM) and the platform aspect model are
first transformed into CSM models separately. Fig 10 presents
a subset of the scenarios that constitute the CSM model of the
Purchase Order system PIM: the top-level scenario and the
refinement of the composed step Ship Product. The UML
workflow model is transformed into the CSM top scenario
model, whose activities are in turn refined by CSM sub-
scenarios obtained by the transformation of the service
behaviour model interaction diagrams into CSM.

 The procedure for the aspect composition in CSM form
Fig. 9 is similar to the one in UML. However, the point cuts
rules cannot be defined exclusively at the CSM level, because
the details of the service architecture model at the UML level
is not entirely transformed to CSM. CSM is scenario-based
and its metamodel mainly captures the details of the
behaviour models, while many of the details of the structure
models are lost during the transformation. This is one of the
major drawbacks of performing aspect composition at the
CSM level. To solve this issue, we need to go back to the UML
level in order to use the service architecture model for
identifying the services of the PO system, then to identify the
steps in the CSM model that correspond to service
invocations.

Fig. 8. Result of composition for Ship Product at UML level

41

After identifying the join points in CSM, we need to

instantiate the context specific aspect model. The generic
roles are bound to concrete ones, similar to the UML
composition, and the performance variables are assigned
concrete values. The generic roles in a CSM scenario are used
in ResourceAcquire or ResourceRelease steps, which describe
the acquisition and releasing of a generic resource. Table 1
and Table 2 describe the binding of the generic roles and
parameters to the concrete ones for our example.

Aspect composition is the last step, done by weaving the
context specific aspect model in the PIM. At CSM level, the
weaving requires replacing the join point steps, the preceding
ResourceAcquire and the succeeding ResourceRelease with the

context-specific aspect. Fig. 11 illustrates the composition
result for Ship Product.

More details regarding the aspect composition in CSM
can be found in (Woodside et al., 2009) and (Alhaj, 2008).

4.3. Aspect Composition at the LQN Level

The LQN model is an extended queueing network model
which is able to represent nested services (Woodside et al.,
1995). An LQN model is an acyclic graph of nodes called
“tasks” that offer services called “entries” (see Fig.13). The

Fig. 9. PUMA4SOA approach: Aspect composition at CSM level.

Fig. 10. Subset of the CSM model of the Purchase Order PIM.

Fig. 11. Result of composition for Ship Product at CSM level.

42

entries of a task may request services from the entries of
other tasks (the requests are represented as directed arcs).
LQN is used to model several types of system behaviour and
inter-process communication styles.

 Tasks represent both software and hardware devices, and
allow for multi-threading and nested services. An entry may
contain a graph of activities, as in Fig. 13. Graphically, the
software tasks are represented with thick rectangles and the
entries with attached thin rectangles. The hardware devices
are represented as ellipses.

PUMA4SOA allows for performing the AOM aspect
composition at the LQN level (see Fig. 12). The CSM of PIM
and the generic CSM of the platform aspect model are first
transformed into LQN models separately. Fig. 13 represents
the LQN model of the platform-independent PO model. The
workflow layer, which represents the CSM top scenario
model, is transformed into a top level LQN activity graph
associated with a task called POProcess allocated on
SalesHost. The service layer, corresponding to CSM sub-
scenario models that describe the services, is transformed
into a set of tasks with their owned entries. Fig. 14 illustrates
a simplified LQN of the generic platform aspect model, where
the steps performed by the XML parser and the SOAP stubs in
the middleware model have been aggregated. (More details
are given in (Alhaj and Petriu, 2010). The |Client and
|Provider tasks own a client and service entries, respectively.
The middleware on the |Client side (|MW1) owns a send entry
which sends the service request, and the |Provider side
(|MW2) owns a receive entry which receives the service
request. The network delay suffered by the message is
modeled by the delay entry of the |net task.

The procedure for aspect composition in LQN is similar
to the ones for UML and CSM levels. However, since the LQN
metamodel is different, the point cut rules and join points are
defined with different model elements. Note that the
drawback of CSM regarding the loss of service details has
been propagated to the LQN level. The LQN point cut rule for
Service Invocation is checking for a request arc from a client
which is requesting an entry that corresponds to a service.
Note that, by construction, an entry providing a service has
the same name as the service.

The next phase is instantiating the context-specific

aspect model from the generic one, which is similar to the
step performed at the UML level, where the generic roles
defined in the LQN model in Fig. 14 are bound to concrete
ones. The final phase is performing the aspect composition at
the join points. In our Purchase Order example, we composed
the context specific aspect model of the service invocation of
SetSchedulingDate by adding new tasks with entries to the
LQN, which model the middleware for all components and
the network delay. The result of aspect composition in LQN is
illustrated in Fig. 15 (the LQN tasks and entries that
represent the platform are shaded in gray).

Fig. 12. PUMA4SOA approach: Aspect composition at LQN level.

Fig. 13 The LQN model of PIM for Purchase Order.
system

Fig. 14. The LQN generic platform aspect model for Service
Invocation.

&

user User

Sales
Host

User

Shipping
Host

Scheduling
Host

&

ReceivePO Sales

ReceivePO

P
O

P
ro

ce
ss

InitialInvoice
Request

Invoicing

SetShipping
Date

GetShipping
Cost

Shipping
Invoicing

Host

ShipProduct

ProcessInvoice ProcessSchedule

updatePOTable

DM-Sales

updateSchedulingTable

DM-SCh

readData writeData Disk

updateShippingTable

readShippingCost DM-Ship

update
InvoiceTable

DM-Inv

Disk

Schedule
ManufacturingPeriod

Scheduling

43

4.4. Comparison between Composition Alternatives
As already mentioned, PUMA4SOA provides the

flexibility of transforming a platform independent model to a
platform specific model based on aspect composition at three
levels: UML, CSM and LQN. This allows the modelers to select
between different 43odelling languages and to perform the
AOM aspect composition based on their needs.

The main advantage of performing aspect composition in
UML stems from the language features. UML is an OMG
standard 43odelling language. It is popular, supported by
several model-driven tools and represents the software
model which is well understood by software developers.

We also noticed that we were able to define easily the
point cut rules in UML, whereas it is more complicated in
CSM and LQN. The reason is that some of the SOA-related
information, which is present in the UML model, gets lost in
the transformation to CSM and to LQN, which are more
abstract models. Another advantage of performing aspect
composition in UML is the ability to modify models with
changing requirements, which cannot be done as easily in
CSM or LQN directly; any model change must start from UML,
in order to keep the consistency between software and
performance model throughout the transformation chain.

However, the UML aspect models have usually multiple
views (structural and behavioural) represented by different
diagrams, so the composition should take place in all these
views. This complicates not only the composition, but the
effort of maintaining all the views of the composed system

consistent. Besides, the composed models are more complex
and may become harder to be understood by the developers.

On the other hand, CSM and LQN both have a lightweight
metamodel compared with UML and a single view for each
model. This advantage makes the implementation of the
aspect composition simpler in CSM and LQN. It is significantly
easier to insure the composition consistency and to reduce
the execution time required for the model transformation in
PUMA4SOA. Table 3 summarizes the points of comparison
between the three levels of platform aspect composition.

Table 3. Comparison between aspect composition at UML, CSM and

LQN levels.

Comparison Criteria UML level CSM level LQN level
Language features
(standard, popularity)

yes no no

Modeling language
expressive power

high low low

Facility to define point cuts easy difficult difficult
Metamodel complexity high low low

Facility to insure
composition consistency

difficult easy easy

Implementation complexity
of aspect composition

difficult easy easy

Execution time of model
transformations

long short short

Figure 15. The LQN model of the Purchase Order system.

Shipping
Host

&

user User

Sales
Host

User

Scheduling
Host

&

ProcessSchedule

ReceivePO

P
O

P
ro

cess

Invoicing
Host

ShipProduct

ProcessInvoice

delay LAN

delay LAN

reply MW-Ship receive updateInvoiceTable

DM-Inv

readData writeData Disk Disk

receivePO Sales

send MW-Sales receive

delay LAN

updatePOTable

DM-Sales

reply MW-Sch receive

updateSchedulingTable

DM-SCh

initialInvoice
Request

Invoicing

send MW-Inv receive reply

schedule
ManufacturingPeriod

Scheduling

updateShippingTable

readShippingCost DM-Ship

delay LAN SetShipping
Date

Shipping
GetShipping

Cost

44

5. Multiple Aspect Composition in PUMA4SOA
As described by the PC feature models in Section 2, a

service platform is characterized by many features. In our
work, each platform feature corresponds to an aspect model.
PUMA4SOA provides the ability to perform multiple service
platform aspect compositions. From the hierarchy of service
platform aspects defined in the PC feature model, the
developers are able to select as many aspects as needed for
the application according to the requirements. The generic
UML models of the selected aspects are extracted from a
predefined library. This library contains structural and
behavioural representations for every service platform
aspect in a generic form, as described in section 4.1.

In the multiple aspect composition process, a chain of
individual aspect compositions is performed, where each
composition may depend on others within the chain. The
cause of the dependency comes from the fact that the selected
aspects are woven into the same primary model, which
means that they share the same context model elements, i.e.
same concrete roles and parameters. Moreover, in some cases
nested compositions are required, where the result of weaving
a preceding aspect may act as a primary model for a
succeeding one. Due to the dependencies between the aspect
compositions, ordering the chain of individual aspect
composition is critical.

In the PO system example, the goal of aspect compo-
sition is to generate the platform specific model by weaving
the service invocation aspect into the PIM. Assume that a new
aspect is selected from the PC feature model, such as message
security, which aims to secure all messages which are sent
through public networks. To secure the message exchange
that corresponds to service invocations in the PO system, the
Secure Socket Layer (SSL) protocol can be used (Freier et al,
2011). SSL is normally used for web-based secure
transactions; it handles mutual or one one-way
authentication and preserves the integrity of the data
exchange between the client and the server. Fig. 16a
illustrates the generic deployment diagram and Fig. 16b the
sequence diagram of a simplified SSL protocol aspect model
(Freier et al, 2011).

The behaviour of the SSL protocol has two phases: 1) the
handshake phase, where both the client and the server
authenticate each other, and 2) the transfer phase, where the
message exchange takes place, with the encryption of the
data before the transfer and the decryption of the data on the
other side. This is a case of nested composition, where the
invocation aspect is woven first and the security aspect
second.

Aspect composition is performed by following the same
AOM procedure described in the previous sections. For
simplicity, we will perform aspect composition at the UML
level. In defining the point cut rule, we are looking for all
UML elements of type Message in the service behaviour
model stereotyped with «PaCommStep», whose sender and
receiver are allocated on different nodes. The second step is

identifying the join points by applying the point cut condition
to the primary model. The result will identify all the join
points; one of them is RequestSOAPMessage in the Ship
Product sequence diagram shown in Fig 8. The context-
specific aspect models are then generated by instantiating the
generic aspect model of the SSL protocol by binding the
generic roles and formal parameters to concrete values. Table
4 illustrates the binding of generic roles in this case.

Table 4. Binding Generic to Concrete roles.

Generic Aspect Context Specific Aspect
|Client SOAPSales
|ClinetSSL SOAPSalesSSL (new)
|Server SOAPShip
|ServerSSL SOAPShipSSL (new)

a) Generic deployment diagram for SSL protocol

b) Generic behaviour diagram for SSL protocol

Fig. 16. Platform aspect model for “SSL protocol”.

45

The final step in AOM is to weave the context specific aspect
model within the primary model at the join point location.
Fig. 17 shows a composed model, where the
RequestSOAPMessage message (join point) has been replaced
with the context specific aspect model (the gray area).

6. Performance Analysis
In this section, we give a brief example of performance

analysis for the Purchase Order system. The main purpose of
the performance analysis is to find the performance
bottleneck (i.e. software or hardware components that
saturate first and throttle the system). After identifying the
bottleneck, we apply a series of hardware and/or software

modifications to mitigate the bottleneck and to improve the
response time and the throughput of the overall system.

Fig. 15 represents the LQN model generated for the PO
system (the aspect composition of SSL protocol is not
included). An existing LQN solver is used to solve the model
and to produce task service times (including waiting for
nested services), queueing delays, processor utilizations,
response times and throughputs. The results are used to
identify the performance hotspots in the system.

The results of the performance analysis, shown in Fig. 18
represent the response time and throughput of the system in
function of the number of users ranging from 1 to 100. We
analyzed several configurations:

Fig. 17. Multiple aspect composition for Ship Product at UML level.

46

 Initial: the base case where the multiplicity of all tasks
and hosts is 1. The Sales task is the software bottleneck.
To mitigate the bottleneck, we increase the multiplicity of
Sales task.

 A: The bottleneck is resolved by increasing the
multithreading of the Sales task to 15, so that multiple
requests can be served concurrently. The response time
is reduced by 55% (with respect to the initial), and
moves the bottleneck to the Invoicing task.

 B: The bottleneck is resolved by increasing the
multithreading of the Invoicing to 5. The response time is
reduced by 49% (with respect to A), and moves the
bottleneck to Disk host, and disk server.

 C: the bottleneck is resolved by increasing the
multiplicity of the disk host to 4, and increase the
multithreading of the disk server to 3.

The performance analysis results show that the response
time has been reduced by 90%, and throughput improved by
60% compared to the base configuration (initial).
 Another example of performance analysis for a SOA
system is given in (Alhaj, 2011), where the trade-off between
service granularity and system performance is investigated.

7. Related Work
This section presents a brief overview of related works.

In the past decade, OMG has standardized two UML profiles
that extend UML for the real-time domain: the “UML Profile
for Schedulability, Performance and Time (SPT)” defined for
UML 1.X, and the “UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE)” (OMG, 2009)
defined for UML 2.X. Both SPT and MARTE include their own
performance subprofiles, which allow annotating UML
models of real time systems with quantitative resource
demands and other information required for performance
analysis. The standardization efforts on the one hand and the
emergence of Model-Driven Architecture on the other hand,
have triggered a lot of research on the automatic derivation
of different kinds of performance models from annotated
software models, as surveyed in (Cortellessa et al, 2011).

A popular realization of SOA systems is based on Web
Services; therefore there is interest in modeling and
analyzing the performance of such systems. As Web Services
use the SOAP protocol, which is XML-based and introduces
performance overheads, the performance impact of different
SOAP implementations was investigated in (Gomez-Martýnez
and Merseguer, 2006). Other research on building
performance models for web services takes a two-layered
user/provider approach in (Marzolla and Mirandola, 2007):
the user is a set of workflows and the provider a set of
services deployed on a physical system; the queueing
network formalism is used to derive performance bounds. In
(D’Ambrogio and Bocciarelli, 2007), performance information
about service capabilities and invocation mechanisms is
given by the means of P-WSDL (Performance-enabled WSDL).

An approach to model platform operations, called
performance completions is presented in (Happe et al., 2010).
Such completions abstract from platform-specific details and
can be instantiated for different target environments using
measurements of a test-driver designed especially for a
parametric performance completions. Performance
completions close the gap between available high-level
models and required low-level ones.

Reusable Aspect Models (RAM) is a scalable approach to
multi-view aspect-oriented modeling presented in (Kienzle
et.al., 2010). RAM allows the modeler to define stand-alone
reusable aspect models that support the modeling of
structure (using UML class diagrams) and behavior (using
UML state and sequence diagrams). RAM supports aspect
dependency chains, which allows an aspect providing
complex functionality to reuse the functionality provided by
other aspects. The paper (Xu et al., 2007) presents an aspect-
based modeling approach for web service composition using
UML. The approach was motivated by weaknesses of the
current composite specification, such as BPEL. In (Abu-Eid,
2007) it is presented an aspect oriented approach which aims
to make the process of applying features to web services
more flexible and less resource consuming. The approach
introduced an aspect oriented extension module which

Fig. 18. The LQN results of Purchase Order system:
Response time and Throughput.

47

modularizes the logic of applied features. In (Feng et al.,
2009), a requirement-driven aspect oriented approach for
web service composition (WSC) is proposed. In this approach,
the level of abstraction of evolution modeling for web
services composition has been elevated from business
process level to strategic goal level. However, none of the
AOM approaches targets platform modeling like in our case.

8. Conclusions
The paper focuses on the ability of PUMA4SOA to

transform the Platform Independent Model (PIM) of SOA
systems into Platform-Specific Model (PSM) by using AOM.
PUMA4SOA is a model transformation framework which aims
to generate performance models from different design
models of SOA systems. It provides the flexibility to perform
aspect composition at three levels: UML, CSM and LQN.
Although the aspect composition follows similar steps, the
degree of composition complexity differs between the three
levels, especially between UML and the other two. The
complexity depends on the size of the respective language
metamodel. A comparison has been done to present the pros
and cons of performing aspect composition at the three
levels. The main points of comparison are related to language
features complexity of the metamodels, implementation
complexity of aspect composition, etc.
 The paper also discussed the ability of PUMA4SOA to
perform multiple aspect compositions by selecting multiple
aspects from the PC feature model and then applying a chain
of aspect compositions. The dependency between aspect
compositions was a major concern, since the order of aspect
composition is importance. The dependencies between
service platform aspects can be defined by using the
relationships defined in the PC feature model, and by using a
constraint language, such as the OCL language, to define
which aspects can be used together and in which order. The
relationship and dependencies between the service platform
aspects will be part of our future work,

We have implemented aspect composition in CSM (Alhaj,
2008) but not in UML or LQN. We are integrating CSM
composition in the PUMA4SOA. We are planning to define
other aspects for SOA platform services (such as discovery,
publishing, subscription, and message security) and to study
their influence on the performance of SOA systems.

Acknowledgements

This research was partially supported by the Natural
Sciences and Engineering Research Council (NSERC) and
industrial and government partners, through the hSITE
Strategic Research Network.

References
Abu-Eid, V. (2007), “An Aspect Oriented Approach for

Applying Features to Web Services”, IEEE International
Conference on Web Services (ICWS07).

Alhaj, M. (2008), "Aspect Composition in Core Scenario
Models", Master Thesis, Department of Systems and
Computer Engineering, Carleton University, Ottawa.

Alhaj, M., Petriu, D. C. (2010). “Approach for generating
performance models from UML models of SOA systems”,
Proceedings of CASCON 2010, Toronto, ON, Canada, pp.
268-282.

Alhaj, M., Petriu, D. C. (2012). “Aspect-oriented Modeling of
Platforms in Software and Performance Models”, Proc. of
the International Conference on Electrical and Computer
Engineering ICECS’ 2012, Ottawa, Canada.

Alhaj, M. (2011). “Automatic generation of performance
models for SOA systems”, Proceedings of the 16th
international workshop on Component-oriented
programming WCOP '11, pp. 33-40.

Batory, D. (2005) "Feature models, grammars, and
propositional formulas", SPLC'05 Proceedings of the 9th
International Conference on Software Product Lines, pp
7-20.

Cortellessa, V., Di Marco, A., P Inverardi, P. (2011). Model-
based software performance analysis, Springer.

D’Ambrogio, A., Bocciarelli, P. (2007) “A Model-driven
Approach to Describe and Predict the Performance of
Composite Services”, Proceedings of WOSP’07, Buenos
Aires, Argentina.

Earl, T. (2005), Service-Oriented Architecture: Concepts,
Technology, and Design, Pearson Education.

Feng, Z., He, K., Ma, Y., Peng, R., Gong, P. (2009), “A
Requirements-Driven and Aspect-Oriented Approach for
Evolution of Web Services Composition”, Proceedings of
WMWA '09 the Second Pacific-Asia Conference on Web
Mining and Web-based Application.

France, R., Ray, I., Georg, G., Ghosh, S. (2004), “An Aspect-
Oriented Approach to Early Design Modeling,” IEE
Proceedings - Software, Special Issue on Early Aspects:
151(4):173-185.

Gomez-Martýnez, E., Merseguer, J. (2006) “Impact of SOAP
Implementations in the Performance of a Web Service-
Based Application”, ISPA 2006 Ws, LNCS 4331, pp. 884–
896.

Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.
H. (2010), "Parametric Performance Completions for
Model-Driven Performance Prediction”, Performance
Evaluation, Vol. 67 (8): 694-716.

Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S., (1990)
“Feature-oriented domain analysis (FODA) feasibility
study”, Technical Report CMU/SEI-90TR-21, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Kienzle, J., Al Abed, W, Fleurey, F., Jézéquel, J.M., Klein, J.,
(2010) “Aspect-Oriented Design with Reusable Aspect

48

Models”, Transactions on Aspect-Oriented Software
Development, vol. 7, pp. 279 – 327.

Marzolla, M., Mirandola, R. (2007) "Performance Prediction of
Web Service Workflows," Proceedings. of QoSA 2007,
LNCS 4880, pp. 127–144.

OMG (2009b), UML Profile for MARTE (Modeling and
Analysis of Real-Time and Embedded systems), Version
1.0, formal/2009-11-02.

OMG (2012), Service oriented architecture Modeling
Language (SoaML), formal/2012-03-01.

Petriu, D. B., Woodside, C. M. (2007), “An Intermediate
metamodel with scenarios and resources for generating
performance models from UML designs”, Software and
Systems Modeling, 6 (2): 163-184.

Selic, B. (2008) “Accounting for platform effects in the design
of real-time software using model-based methods”. IBM
Systems Journal 47(2): 309-320.

Smith, C.U. (1990), Performance Engineering of Software
Systems, Addison Wesley.

Tawhid, R., Petriu, D.C., (2011) “Automatic Derivation of a
Product Performance Model from a Software Product
Line Model”, Proc. of the 15th International Conference
on Software Product Line (SPLC’11), Munich, Germany.

Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S. (1995)
‘’The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-like
Distributed Software,'' IEEE Transactions on Computers,
44 (1): 20-34.

Woodside, C.M., Petriu, D.B., Siddiqui, K.H., (2002)
"Performance-related Completions for Software
Specifications". Proc. of the 22rd Int Conference on
Software Engineering, ICSE 2002, pp. 22-32, Orlando,
Florida, USA.

Woodside, C. M., Petriu, D. C., Petriu, D. B., Shen, H., Israr, T.,
Merseguer, J. (2005), “ Performance by Unified Model
Analysis (PUMA)” Proc. 5th Int. Workshop on Software
and Performance WOSP'05, pp. 1-12.

Woodside, C. M., Petriu, D. C., Petriu, D. B., Xu, J., Israr, T.,
Georg, G., France, R., Bieman, J., Houmb, S. H., Jürjens, J.,
(2009), "Performance Analysis of Security Aspects by
Weaving Scenarios from UML Models", Journal of
Systems and Software, 82 (1): 56–74.

Xu, Y., Tang, S., Tang, Z. (2007), “Towards Aspect Oriented
Web Service Composition with UML”, Proc. of 6th
IEEE/ACIS International Conference on Computer and
Information Science (ICIS07).

