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Abstract- Numerical solution of nonlinear least-squares 
problems is an important computational task in science and 
engineering. Effective algorithms have been developed for 
solving nonlinear least squares problems. The structured 
secant method is a class of efficient methods developed in 
recent years for optimization problems in which the Hessian of 
the objective function has some special structure. A primary 
and typical application of the structured secant method is to 
solve the nonlinear least squares problems. We present an 
exact penalty method for solving constrained nonlinear least-
squares problems, when the structured projected Hessian is 
approximated by a projected version of the structured BFGS 
formula and give its local two-step Q-superlinear convergence. 
For robustness, we employ a special nonsmooth line search 
strategy, taking account of the least squares objective. We 
discuss the comparative results of the testing of our programs 
and three nonlinear programming codes from KNITRO on some 
randomly generated test problems due to Bartels and Mahdavi-
Amiri. Numerical results also confirm the practical relevance of 
our special considerations for the inherent structure of the 
least squares.  
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1. Introduction
Consider the constrained nonlinear least squares

(CNLLS) problem, 

where, 1( ) [ ( ),..., ( )]T

lF x f x f x , 
nRx , f , 1 l  , 

and ic , 1,...,i k m  , are functions from
nR to R , all

assumed to be twice continuously differentiable. These 
problems arise as experimental data analysis problems in 
various areas of science and engineering such as electrical 
engineering, medical and biological imaging, chemistry, 
robotics, vision, and environmental sciences; e.g., see 
Nievergelt (2000), Golub and Pereyra (2003) and Mullen et 

al. (2007). The gradient and Hessian of f can be expressed 

as 

( ) ( ) ( ),x G x F x  (2)

 and 

2 ( ) ( ) ( ) ( ),Tx G x G x S x   (3)

 where, ( )G x is the matrix whose columns are the gradients

( )f x , and

2

1
( ) ( ) ( ).

l
S x f x f x  

  (4)

Using this special structure for approximating the Hessian 
matrix has been the subject of numerous research papers; see 
Fletcher and Xu (1987), Dennis et al. (1989), Mahdavi-Amiri 
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c x i k k m
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and Bartels (1989), Li et al. (2002), Mahdavi-Amiri and 
Ansari (2012a), and Bidabadi and Mahdavi-Amiri (2012). 
Here, we consider the structured BFGS approximate formula 
(Dennis et al., 1989) for the structured least squares 
projected Hessian and a special line search scheme given by 
Mahdavi-Amiri and Ansari (2012c) leading to a more efficient 
algorithm than general nonlinear programming schemes. An 
exact penalty function for nonlinear programming problems 
is defined to be  
 

1 1

( , ) ( ) | ( ) | min(0, ( )),
k k m

i i

i i k

x x c x c x  


  

     
 

(5) 

 

where, 0  is a penalty parameter. If 
*x  is a stationary 

point of (1) and the gradients of the active constraints at 
*x

are linearly independent, then there exists a real number 
* 0   such that 

*x is also a stationary point of ( , )x  , for 

each
*0    . Mahdavi-Amiri and Bartels (1989), based 

on a general approach for nonlinear problems (See Coleman 
and Conn, 1982a), proposed a special structured algorithm 
for minimization of   with a fixed value of   in solving the 

CNLLS problems. Let   be a small positive number used to 

identify the near-active ( -active) constraint set. The 

algorithm obtains search directions by using an  -active set 

 

( , ) { :  | ( ) | ,  1 },iAC x i c x i k m     
 

(6) 

 
and a corresponding merit function: 
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( , ) { :  | ( ) | ,   1 },  

( , ) { :  ( ) ,   1 }.

i

i

VE x i c x i k

VI x i c x k i k m

 

 

   

      
 

(8) 

 

Step lengths are chosen by using , which is   with 0  . 

The optimality conditions are checked by using , as well. 

The gradient and Hessian of   are: 
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and  
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where, 
 

( , )

 ( , )

 ( , )
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It is well known that the necessary conditions for 
*x  to 

be an isolated local minimizer for , under the assumptions 

made above on   and the ic , are that there exist multipliers, 

*

i , for
*( ,0)i AC x , such that  

 

*

* * * * *

0

( ,0)

( , ) ( ) ( ) ,i i

i AC x

x c x A x   
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(13) 

 
A point x  for which only (12) above is satisfied is called 

a stationary point of . A minimizer 
*x  must be a stationary 

point satisfying (13). One major premise of the algorithm is 
that the multipliers are only worth estimating in the 
neighborhoods of stationary points. Nearness to a stationary 

point is governed by a stationary tolerance 0  . The 

algorithm is considered to be in a local state, if norm of the 

projected or reduced gradient, i.e., || ( , ) ||TZ x  , is 

smaller than this tolerance, and it is in a global state, 
otherwise. Fundamental to the approach is the following 
quadratic problem: 
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s.t.     ( ) 0,      ( , ),

T T

T

i

h Hh x h

c x h i AC x

 





  
 

 
(14) 

 

 
where, 
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2 2

( , )
( , ) _ ( ),i ii AC x

H x c x 
  


   (15) 

 

the i  are the Lagrange multipliers associated with (14) in a 

local state (in the proximity of a stationary point) and the i  

are taken to be zero when the algorithm is in a global state 
(far from a stationary point). In practice, the QR 

decomposition of ( )A x  is used to solve the quadratic 

problem:  
 

( ) [ ] .
0 0

R R
A x Q Y Z

   
    

   
 

 
(16) 

 

If we set h Zw , for some 
nRw , then w  is to be found 

by solving  
 

( , ).T TZ HZw Z x     (17) 

 
Therefore, for solving the quadratic problem (14), we 

need an approximation for the projected or reduced Hessian 
TZ HZ . We are to present a projected structured BFGS 

update formula for computing an approximation 
T

zB Z HZ
 

by providing a quasi-Newton approximation

( , )T

zA Z S x Z , where, 
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with the setting ( ) ( )T T

z zB Z G x G x Z A  . We give the 

asymptotic convergence results of exact penalty methods 
using this projected structured BFGS updating scheme. 
Consider the asymptotic case, that is, the case that the final 

active set has been identified, so that for all further k , with 
*x  designating the optimal point, we have 
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*

*
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(19) 

 
Suppose that 
 

, ( , ) ,T k

z k k k kA Z S x Z  (20) 
 

 

and we want to update ,z kA  to , 1z kA  , approximating 

 
1

, 1 1 1 1( , ) .T k

z k k k kA Z S x Z 

     (21) 

 

Note that
tntn

kzkz RAA 

 
,

1,, , , where t  is the number of 

active constraints. We assume rank ( ( )kA x ) = t , for all k . 

Letting ( )Ts Z x x   and ( )Tq Y x x  , we have 

x x Yq Zs   , where, in order to simplify notation, the 

presence of a bar above a quantity indicates that it is taken at 

iteration 1k  , and the absence of a bar indicates iteration 

k . If the constraints are linear, then 0q  , for 0k  . In the 

nonlinear case, asymptotically it is expected that Yq  be 

negligible and thus we obtain (Mahdavi-Amiri and Bartels, 
1989): 
 

( , ) [ ( ) ( )

                        ( ) ] .

T TZ S x Zs Z G G F E E

I I e A y

  



   

   
 

(22) 

 

Thus, we use the quasi-Newton formula to update 
zA  to 

zA  according to the secant equation
zA s y , when Yq  has 

actually become negligible, that is, when  
 

1
|| || || ||,

( 1)
q s

k 







 
 

(23) 

 

for 0.01  , where k  is the iteration number and || . ||  

denotes the Euclidean norm, as suggested by Nocedal and 
Overton (1985) for general constrained nonlinear programs. 

Therefore, an approximation zB  to 
TZ HZ  is 

 

( ),z zB A Q x 
 

(24) 

 
where, 
 
 

( ) ( ) ( ) .T TQ x Z G x G x Z  
(25) 

 
  A general framework for exact penalty algorithm to 
minimize (5) is given below (see Mahdavi-Amiri and Bartels, 
1989). 
 
Algorithm 1: An Exact Penalty Method. 

Step 0: Give an initial point , 0x    and 0t  . 
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Step 1: Determine ( , )AC x  , ( , )VE x  , ( , )VI x  , 

( )A x . Identify the matrix Z  by computing the QR 

decomposition of ( )A x  and set global=true, optimal=false. 

Step 2: If || ( , ) ||TZ x    , then obtain the search 

direction d  that is a solution of the quadratic problem (14), 

where, H  approximates the global Hessian 
2 ( , )x  , 

and go to Step 5. 

Step 3: Determine the Lagrange multipliers
i , 

( , )i AC x  , as a solution of  

 

2min  || ( ) ( , ) || .A x x    (26) 

 
If conditions (13) are not satisfied, then choose an index r  
for which one of (13) is violated, and determine the search 
direction d  that satisfies the system of equations 

( )T

r rA x d e , where, 
re  is the r th unit vector, and 

sgn( )r r   , and go to Step 5. 

Step 4: Set global=false. Determine the direction 

Ad h v  , where, 
Ah  is the solution to the quadratic 

problem (14), H  approximates the local Hessian 
2 2

( , )
( , ) ( )i ii AC x
x c x 

  


  
 

with the 
i  being the 

Lagrange multipliers associated with (14) as determined in 
Step 3. The vertical direction v ,  is the solution to the system 

  

( , )( ) ( ),T

AC x AA x v c x h    (27) 

 

where, ( , )AC xc   is the vector of the constraint functions, 

ordered in accordance with the columns of ( )A x . Set the step 

length 1   and go to Step 6. 

Step 5: Determine step length   using a line search 

procedure on ( , )x  . 

Step 6: Compute x x d  . If a sufficient decrease 

has been obtained, then set x x , else go to Step 8. 

Step 7: If global=false, then check the optimality 
conditions for x . If x  is optimal, then set optimal=true and 

stop, else go to Step 1. 

Step 8: If global=true and ( , ) ( ,0)AC x AC x  , then 

reduce   to change ( , )AC x  , else reduce   so that 

|| ( , ) ||TZ x   becomes large tested against  . 

Step 9: If (global=true and ( , ) ( ,0)AC x AC x  ) or   

is too small or   is too small, then report failure and stop, 

else go to Step 1. 
Remarks: In Step 6, we have used an appropriate 

nonsmooth line search strategy to determine the step length 

satisfying a sufficient decrease in   that is characterized by 

the line search assumption; see Coleman and Conn (1982b), 
part (v), P. 152. For a recent line search strategy for CNLLS 
problems, see Mahdavi-Amiri and Ansari (2012a, 2012c). In 
Step 7, the optimality conditions are checked as follows: If 

0|| ( , ) ||TZ x   is small enough, then determine the 

multipliers 
i , ( ,0)i AC x , as the least squares solution of 

(26). If the conditions (13) are satisfied, then x is considered 

to satisfy the first order conditions, and thus x  being a 

stationary point, the algorithm stops, as commonly practiced 
in optimization algorithms. Of course, second order 
conditions are needed to be checked to ascertain optimality 
of x . 

 In the remainder of our work, we drop the index z  from 

zA  and 
zB , for simplicity.  

For approximating the projected structured Hessians in 
solving the quadratic problem, we make use of the ideas of 
Dennis et al. (1989) in a different context. We consider the 

structured BFGS update of A ,  given by 
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where,  
 

,ssB
ssBs

syssyv
T

T

  

( )sy Q x s y  and ).(xQAsB   

 

Remark: Clearly, A , given by (32), satisfies the secant 

equation As y . 

Here, we use the BFGS secant updates for approximating 
the projected structured Hessians in solving the constrained 
nonlinear least squares problem. 

The remainder of our work is organized as follows. In § 
2, we give the asymptotic two-step superlinear convergence 
of the algorithm. Competitive numerical results are reported 
in § 3. The results are compared with the ones obtained by 
the three algorithms in the KNITRO software package for 
solving general nonlinear programs. We conclude in § 4. 
 

2. Local Convergence 
Here, we give our local two-step superlinear convergence 
result. We make the following assumptions. 
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Assumptions: 

(A1) Problem (1) has a local solution
*x . Let

*

1 1{ :  || || }D x x x    . 

(A2) { }kx , generated by Algorithm 1 for minimizing ( , )x 

is so that 
1kx D , k . 

(A3) The function   and 
ic , 1,...,i k m  , are twice 

continuously differentiable on the compact set 
1D . 

(A4) 
2 ( )x  and 

2 ( )ic x  are locally Lipschitz continuous 

at 
*x . 

(A5) ( )Q x  is locally Lipschitz continuous at 
*x , that is, there 

exist a constant 0L   such that 

 
* *

1|| ( ) ( ) || || ||,  .Q x Q x L x x x D      (29) 

 

(A6) The gradients of the active constraints at 
kx , for all k , 

are linearly independent on 
1D . 

(A7) There exist positive constants 
1b  and 

2b  such that 

 
nT RzzbzBzzb  ,|||||||| 2

2

*2

1  (30) 

 

where, 
*B  is the projected Hessian at 

*x . 

We will make use of the following two theorems from 
Mahdavi-Amiri and Ansari (2012a) and Nocedal and Overton 
(1985). 

Theorem 1. (Mahdavi-Amiri and Ansari, 2012a) There 

exists 
2 0  such that if 

2|| ||ke   and 
1 2|| ||ke   , then 

 
*

1 1

* * *

|| || max(|| ||,|| ||) || ||

                     || ||,

k k k k k

k

y A s C e e s

Z B Y q

 

  

 
(31) 

 

where, 
*

k ke x x  , 
1 1C   is a constant independent of k , 

and if equation (8) holds, then 
 

*|| || || ||,k k k ky A s s   (32) 

 
where, 
 

* * *

1

|| ||

1 (1 )
(1 ) ,

Z B Y

k k k k
C      

     
(33) 

 

and 
1max(|| ||,|| ||)k k ke e  . 

 
Theorem 2. (Nocedal and Overton, 1985) Suppose that 

Algorithm 1 is applied with any update rule for 

approximating the projected Hessian matrix. If 
*

kx x ,

1

1|| ||kB   , for all k , and 

 
*

1

|| ( ) ||
0,

|| ||
k k

k
k k

B B s
w

x x


 


 

 
(34) 

 
 

then 
*

kx x , at a two-step Q-superlinear rate. 

We now give the so-called bounded deterioration 
inequality for the structured BFGS update formula. 

Theorem 3. Suppose that the inequality (23) and 

Assumptions (A5) and (A7) hold. Let 
1kB 

 be the projected 

structured BFGS secant update formula, that is, 

1 1 1( ),k k kB A Q x    where, 
1kA 

 is the BFGS update 

formula of 
kA  obtained by using (28). Then, there exist a 

positive constant 
1  and the neighborhood 

3D  such that 

 

,|||||||| 1

**

1 ** kBkBk BBBB   (35) 

 

for all
1 3,k kx x D  . 

 
Now, we give a linear convergence result. 

Theorem 4. Suppose that Assumptions (A1)-(A7) hold. 

Let 
kB  be the structured BFGS secant update formula, that is, 

( ),k k kB A Q x   where, 
kA  is the BFGS update formula of 

1kA 
 obtained by using (28). Let the sequence { }kx  be 

generated by Algorithm 1. For any (0,1)r , there exist 

positive constants   and   such that if 
0|| ||e   and 

*

*

0|| ||
B

B B   , then 

 

1 1|| || || ||,   1,k ke r e k    (36) 
 

  

that is, { }kx  converge to 
*x , at least at a two-step Q-linear 

rate. 
The next theorem shows the satisfaction of (34) in 

Theorem 2 for the structured BFGS update formula. 
Theorem 5. If 0K  exists so that for every iteration 

k K , we have 

 

1( 1)
|| || || ||,k kk

q s




  (37) 

 

and we update the 
kB  using the structured BFGS secant 

formula for each k K , that is, ( )k k kB A Q x  , where, 
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kA  is the BFGS update formula of 
1kA 

 obtained by using 

(28), then  
 

*

1

|| ( ) ||
lim 0.

|| ||
k k

k
k k

B B s

x x






 

 
(38) 

 
In §1, we pointed out that we use the structured quasi-

Newton update formula for approximating the projected 
Hessian in Algorithm 1, if the inequality (23) holds (this is 
expected to happen when the algorithm is in its local phase 
with the iterate being close to a stationary point). Now, we 
give the superlinear convergence result for Algorithm 1. 

Theorem 6. Suppose that Assumptions (A1)-(A7) hold. 

Let the sequence { }kx  be generated by Algorithm 1 and 
kB  

be obtained by  
 

1

( ),    if inequality (23) holds,

,               otherwise,

k k

k

k

A Q x
B
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(39) 

 

where, 
kA  is the BFGS update formula of 

1kA 
 obtained by 

using (28). Then, { }kx  converges to 
*x  with a two step 

superlinear rate, that is, 
 

*

1

*

1

|| ||
lim 0.

|| ||

k

k
k

x x

x x










 

 
(40) 

     

3. Numerical Experiments 
We coded our algorithm in MATLAB 7.6.0. In the global 

steps, a line search strategy is necessary. In our 
implementation, for the line search strategy, we used the 
approach specially designed for nonlinear least squares given 

by Mahdavi-Amiri and Ansari (2012a, b, c). We put 1   in 

(23), as suggested by Nocedal and Overton (1985) and set 
210  and 

110  . The initial matrix ,0zA is set to be the 

identity matrix. For robustness, we followed the 
computational considerations provided by Mahdavi-Amiri 
and Bartels (1989). We tested our algorithm on 35 randomly 
generated test problems using the test problem generation 
scheme given by Bartels and Mahdavi-Amiri (1986). 
A simple test generating scheme in  Bartels and Mahdavi-
Amiri (1986) is described here.  The following parameters 
are set for the least squares problem: 
 
  n     : number of variables; 

  l      :  number of components in F(x); 

  em  :  number of equality constraints; 

  rm  :  number of inequality constraints; 

  v     :  number of active inequality constraints. 

 
 The random values for the components of an optimizer 

*x  and the corresponding  Lagrange multipliers, the 
*

i , of 

the active equality constraints  are set between -1 and 1, 
while the Lagrange multipliers of the active inequality 
constraints are chosen between 0 and 1 (the Lagrange 
multipliers of the inactive constraints are set to zero). Then,  

the Lagrangian Hessian matrix at 
*x  is determined as 

follows: 
 

,
             0

0      
)(      

)()(),(

22

11

1

*2*

1

*2**2**2*
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(41) 

 
 

where, 1U  is a )()( ee mvmv   upper triangular matrix. 

Except for ]1,1[1U  , which is set to 2, all the components of 

1U  are random values in the range -1 and 1. 2U  is also an 

upper triangular matrix with random components being set 
between -1 and 1. The scaler   is under user control, and it 

dictates whether the Hessian of the Lagrangian of the 

generated problem is positive definite ( 0 ) or indefinite 

( 0 ). 

Next, for generating the random least squares problem, 

we consider 1( ) [ ( ),..., ( )]T

lF x f x f x ,where, 
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   The values of 0h  and 0D  are determined such that 

0),( **  xL  and 
***2 ),( LxL   , to satisfy the 

sufficient conditions for local optimality of 
*x . The 

constraints of the problem are set as follows: 
 

,)()()(
1

*2



n

j

i

T

iiji xxhixxxc   
 

(43) 
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where, the constants  i  are set so that 0)( * xci
 for the 

active constraints and 1)( * xci
 for the inactive constraints. 

For setting the ih , the gradient of ic  at 
*x  is set to the i th 

column of the identity matrix, to have the linear 
independence of the active constraints at hand. 

  The parameters of these random problems are 
reported in Table 1. All random numbers needed for the 
random problems were generated by the function ‘’rand’’ in 
MATLAB. We generated 35 random problems, composed of 5 
problems in each one of the categories numbered in Table 1 
along with the parameter settings. For the generated problem 
sets 1-3, 4-5 and 6-7, all quantities were exactly the same and 

only ),( **2 xL differed in each set by having a different 

value of . A variety of problems having different number of 

variables and number of constraints were used. We 
generated problems not only having positive definite, but also 
indefinite Hessians of the Lagrangian (with positive definite 
projected Hessians).  
 

Table 1: The parameters of random problems. 

Problem 
Number 

 
n  

 

l  

 

em  

 

rm  

 
v  

 
  

1 5 5 2 3 2 1 
2 5 5 2 3 2 -1 
3 5 5 2 3 2 -10 
4 10 10 5 5 2 1 
5 10 10 5 5 2 -1 
6 20 20 8 12 2 1 
7 20 20 8 12 2 -1 

 
 

For comparison, we solved these random problems by 
the three algorithms in KNITRO 6.0 (Interior-point/Direct, 
Interior-point/CG and Active set algorithms). In keeping the 
three algorithms of KNITRO in line with our computing 
features, we set the parameters ’GradObj’ and ’GradConstr’ to 
’on’, so that exact gradients are used, and the other 
parameters were set to the default parameter values (this 
way, the BFGS updating rule was used for Hessian 
approximations).  

For our comparisons, we explain the notion of a 
performance profile (Dolan and More’, 2002) as a means to 
evaluate and compare the performance of the set of solvers 

S  on a test set P . We assume that we have 
sn  solvers and 

pn  problems. We are interested in using the number of 

function evaluations as a performance measure. Suppose 

,p sN  is the number of function evaluations required to solve 

problem p by algorithm s . We compare the performance on 

problem p  by solver s  with the best performance by any 

solver on this problem; that is, we use the performance ratio 
 

,

,

,

.
min

p s

p s

p s
s

N
r

N
  

 
(44) 

 

We assume that a parameter 
mR  is chosen so that

,m p sR r , for all p  and s , and we put 
,p s mr R  if and only 

if algorithm s  does not solve problem p . If we define 

 

,

1
( ) { : },s p s

p

size p P r
n

      
 

(45) 
 
 

then ( )s   is the probability for solver s S  that a 

performance ratio ,p sr  is within a factor R  of the best 

possible ratio. The function s  is the distribution function 

for the performance ratio. The value of (1)s is the 

probability that the solver will win over the rest of the 
solvers (Dolan and More’, 2002). Figure 1 shows the 
performance profiles of the five solvers. The most significant 
aspect of Figure 1 is that on this test set our algorithm 
outperforms all other solvers. The performance profile for 
our algorithm lies above all the others for all performance 
ratios. According to Figure 1, we observe that our algorithm 
has shown to be substantially more efficient more often than 
the three programs in KNITRO.  

 
Fig. 1. Performance profile for the algorithms. 

 
 
4. Conclusion 

We proposed a projected structured BFGS scheme for 
approximating the projected structured Hessian matrix in an 
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exact penalty method for solving constrained nonlinear least 
squares problems. We established the local two-step 
superlinear convergence of the proposed algorithm. 
Comparative numerical results using the performance profile 
of Dolan and More’ showed the efficiency and robustness of 
the algorithm. 
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